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Abstract

In spite of big data and new techniques, the phylogeny and timing of cockroaches remain in dispute. Apart from sequencing more 
species, an alternative way to improve the phylogenetic inference and time estimation is to improve the quality of data, calibrations 
and analytical procedure. This study emphasizes the completeness of data, the reliability of genes (judged via alignment ambiguity 
and substitution saturation), and the justification for fossil calibrations. Based on published mitochondrial genomes, the Bayesian 
phylogeny of cockroaches and termites is recovered as: Corydiinae + (((Cryptocercidae + Isoptera) + ((Anaplectidae + Lampro-
blattidae) + (Tryonicidae + Blattidae))) + (Pseudophyllodromiinae + (Ectobiinae + (Blattellinae + Blaberidae)))). With two fossil 
calibrations, namely, Valditermes brenanae and Piniblattella yixianensis, this study dates the crown Dictyoptera to early Jurassic, 
and crown Blattodea to middle Jurassic. Using the ambiguous ‘roachoid’ fossils to calibrate Dictyoptera+sister pushes these times 
back to Permian and Triassic. This study also shows that appropriate fossil calibrations are rarer than considered in previous studies.
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Introduction

The family-level relationships of cockroaches have been 
in dispute for decades (Fig. 1; see also McKittrick 1964, 
Klass 2001, Roth 2003). The debate recently intensified 
with many incongruent phylogenies emerging. Most re-
cent studies are based on molecular data (e.g., Djernæs 
et al. 2015, Legendre et al. 2015, Wang et al. 2017, Bour-
guignon et al. 2018, Evangelista et al. 2019), or rarely 
on morphological and ethological data (Klass and Meier 
2006, Djernæs et al. 2015 in part). Despite big data studies, 
the evolutionary pattern of cockroaches remains ambig-
uous: mitochondrial genomes (Bourguignon et al. 2018) 
suggest the basal splits as (Blaberoidea + Corydioidea) 
+ the blattoid complex (i.e. Blattoidea nesting Isoptera), 
while the much bigger transcriptome data (Evangelista et 
al. 2019) suggest Blaberoidea + (Corydioidea + blattoid 

complex), not to mention more incongruent relationships 
of families and subfamilies.

Calibration has a major impact on divergence time 
estimation (Inoue et al. 2010, Dos Reis and Yang 
2012, Sauquet et al. 2012, Sauquet 2013, Magallón 
et al. 2013). Fossils are common calibrations for 
phylogenetic dating, while choosing a suitable fossil 
is difficult (Parham et al. 2011, Wolfe et al. 2016). 
The lack of justified fossil calibrations for dating 
cockroaches is particularly acute (Evangelista et al. 
2017, 2019, Li and Huang 2019). Of the calibrations 
used, the ‘roachoid’ fossils are a particular point 
of contention (Tong et al. 2015 vs. Kjer et al. 2015, 
Bourguignon et al. 2018 per se).

Phylogenetic inference and time estimation can be 
improved by enlarging the dataset with new loci and 
new samples, but also by improving the quality of 
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published data, calibrations and analytical procedure. 
The latter approach is emphasized and presented 
herein. In the present study, the mitochondrial genome 
is preferred as the only type of data for the following 
reasons. First, taxon coverage is comparatively high; 
second, missing data can be essentially avoided; 
third, the computation load (i.e. time investment) is 
acceptable, allowing multiple analyses for comparisons 
among datasets.

Material and methods
Dataset

The present study focuses on true cockroaches (Blattaria), 
the major component of Dictyoptera. Taxa included in my 
analyses also cover other Dictyoptera, namely, termites 
(Isoptera) and mantises (Mantodea), and the living sis-
ter of Dictyoptera, namely Eukinolabia + Xenonomia, as 

Figure 1. Representative phylogenetic inferences of cockroaches based on various data and methods. McKittrick (1964) and McK-
ittrick and Mackerras (1965): female and male genitalia, proventriculus and oviposition behaviour; discussion. Roth (1970): oothe-
cal rotation; discussion. Klass and Meier (2006): male genitalia, accompanied by ethology etc.; parsimony. Wang et al. (2017): gene 
fragments (three mitochondrial and two nuclear), incorporating the data from Djernæs et al. (2015) and others; maximum likelihood. 
Bourguignon et al. (2018): mitogenome; maximum likelihood and Bayesian. Evangelista et al. (2019): transcriptome; maximum 
likelihood. Taxa are shown in currently recognized rank instead of original designation. Branches in orange, Blaberoidea; in green, 
Corydioidea; in purple, Blattoidea. Asterisk, paraphyly.
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suggested by transcriptome data (Misof et al. 2014, Evan-
gelista et al. 2019, Wipfler et al. 2019). In order to reduce 
the difficulty and inaccuracy in alignment, more distant 
insect groups were not included in this study. All DNA 
sequences were collected from whole mitogenome se-
quencing data deposited in GenBank. Isolated fragments 
do not conform to the main idea of the present study be-
cause they leave missing cells in the alignments. A certain 
number of missing cells may be harmless to phylogenetic 
inferences (Wiens 2006, Wiens and Moen 2008), but there 
is no universal standard for different datasets and methods 
to avoid pitfalls. Using fully sequenced mitogenome (thus 
avoiding isolated fragments) can also prevent concatena-
tion of sequences from different specimens, of which the 
genetic distance is unknown. This practice also automat-
ically rules out specimens that are misidentified as con-
specific. Fundamentally, concatenation of sequences from 
different specimens is an artefact and does not represent 
a natural organism. This artefact may cause unpredictable 
errors (pers. observ.); however, the influence of this issue 
seemingly has not yet been addressed in the literature.

The initial data pool comprises 169 mitogenomes, in-
cluding all available cockroaches and selected other insects 
(Suppl. material 1). GenBank files were imported to PHY-
LOSUITE v1.2.1 (Zhang D et al. 2020), in which duplicates 
were removed. To save time and computation resources, 
only one species was kept in each genus, with the exception 
of genetically diverse and speciose genera (e.g., Cryptocer-
cus, Allacta and Ischnoptera). The final taxon set compris-
es 95 species (Suppl. material 2: Table S1). The DNA data 
in the GenBank files were extracted using PHYLOSUITE. 
Most of the mitogenomes (68.4%) are from Bourguignon et 
al. (2018), and the remaining from Yamauchi et al. (2004), 
Cameron et al. (2005, 2012), Zhang YY et al. (2009), Kômo-
to et al. (2010, 2012), Chen (2012), Wang et al. (2014), Jeon 
and Park (2015), Tian et al. (2015), Cheng et al. (2016), Ye 
et al. (2016), Chen et al. (2017), Dumans et al. (2017), Ma 
et al. (2017), Gong et al. (2018), and Zhang LP et al. (2018).

The character set includes 13 protein coding genes 
while all RNA genes were excluded. Aligning RNA gene 
sequences is dependent on the prediction of secondary 
structure (Buckley et al. 2000, Stocsits et al. 2009), the 
accuracy of which clearly influences alignment and tree 
reconstruction (Letsch et al. 2010). This approach is un-
feasible in the present study, because even predicting the 
structure of a small fragment of closely related species is 
hard and exhausting (e.g., Li et al. 2017). To avoid errors 
introduced by inaccurate alignment, I do not use them. 
Besides, RNA gene sequences only account for a minor 
proportion in the mitochondrial genome, therefore ex-
cluding them does not virtually reduce the size of dataset.

Alignment and quality check

Sequences of protein coding genes were aligned using 
MUSCLE in MEGA7 with default settings of codon 
mode (Edgar 2004, Kumar et al. 2016). Uneven ends 

were manually trimmed. 43 sequences were spotted 
containing missing or poorly-sequenced portions, which 
were deleted or question-marked (Suppl. material 3: 
Table S2). Then, all sequences were aligned again. The 
aligned sequences were translated into amino acids to 
check accuracy. Alignments of 13 genes were concat-
enated using PHYLOSUITE. The final alignment is 
10932 bases long.

ALIGROOVE 1.05 (Kück et al. 2014) was used to 
assess alignment ambiguity for each gene, and DAM-
BE 7.2.7 (Xia 2018) to calculate the substitution sat-
uration per codon position per gene (i.e. 3 bases × 13 
genes). Amino acid alignments (translated from the nu-
cleotide alignments) instead of nucleotide alignments 
were imported to ALIGROOVE, because the align-
ments were based on codon model. Saturation was 
calculated under GTR model by default, or under F84 
model when an overflow error occurs (the error itself 
is a sign of saturation).

ALIGROOVE suggests high ambiguity in ATP8 align-
ment, followed by ND6 (Suppl. material 4). Other genes 
exhibit low general ambiguity, but a few taxa with too 
many missing cells in alignments show high ambiguity. 
Even if several incomplete sequences can be excluded in 
the following analyses, ATP8, in general, is still too am-
biguous. On the other hand, the dataset as a whole is not 
significantly affected by scattered ambiguous alignments 
(Suppl. material 4).

According to the 39 saturation plots (Suppl. mate-
rial 5), ATP8, ND4L, ND6 and, as expected, the third 
codon positions are saturated. These three genes are 
among the less informative ones considered in Talave-
ra and Vila (2011). Excluding ATP8, ND4L and ND6, 
data incompleteness was calculated by counting Ns and 
question-marks, both of which are regarded as missing 
cells. Eight taxa with missing cells greater than 1% 
were grouped into ‘BadSeq’: Anallacta methanoides 
(9.17% missing), Aposthonia borneensis (1.80%), Bey-
bienkoa kurandanensis (1.18%), Eublaberus distanti 
(2.87%), Galiblatta cribrosa (3.64%), Megaloblatta 
sp. (2.92%), Metallyticus sp. (8.84%), and Platyzoste-
ria sp. (2.19%).

Bayesian phylogenetic inference

Phylogenetic inferences were performed in MR-
BAYES 3.2.7 (Ronquist et al. 2012). Data were divid-
ed into two partitions: the first and the second bases of 
the codon. The third position of codon was excluded 
from all analyses. I did not use programs to select a 
‘best-fit’ model, not only because this is unnecessary 
(Nascimento et al. 2017, Abadi et al. 2019), but also 
because the ‘best-fit’ is not necessarily the best or ac-
curate (Gatesy 2007, Kelchner and Thomas 2007, Luo 
et al. 2010). Instead, I used the empirically universal 
model, GTR, with Gamma rates (+G). The manual 
and tutorials of MRBAYES (among others) recom-
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mend GTR+I+G as the universal model, but the invari-
able-sites model (+I) generates a strong correlation be-
tween the proportion of invariable sites and the gamma 
shape parameter, and becomes undesirable (Sullivan et 
al. 1999, Yang 2014). Using PHYLOBAYES with the 
CAT-GTR model implemented therein accounting for 
more exhaustive heterogeneities may improve the res-
olution and accuracy of phylogenetic inference (Lartil-
lot and Philippe 2004, Lartillot et al. 2009, Moran et al. 
2015), but this approach is currently impossible given 
the computation resources available to this study. In-
stead, the alignment ambiguity of the final dataset (see 
below) was reported, because the alignment ambiguity 
assessed by ALIGROOVE is also a measure of het-
erogeneous sequence divergence (Kück et al. 2014). I 
did not perform maximum likelihood analysis because 
the interpretation of bootstrapping (the assessment of 
the uncertainty of maximum likelihood estimates) is 
vague (Yang 2014), in contrast to posterior probabil-
ities of Bayesian estimates (Huelsenbeck and Rannala 
2004). Instead, the maximum-likelihood tree sampled 
from MCMC is reported. Each MRBAYES analysis in-
volved two runs, each of which comprises four chains, 
running 1.5–2.5 million iterations depending on the 
difficulty of converging. Samples were taken once ev-
ery 500 iterations and the initial 1%–5% (depending 
on the difficulty of converging) of samples were dis-
carded (burn-in). I used TRACER 1.7.1 (Rambaut et 
al. 2018) to ensure sufficient effective samples (200 at 
least, 300–1000 in general).

The first analysis utilized all 13 genes. The results are 
only used for comparison with the second step analyses, 
to observe the influence of ATP8, ND4L and ND6.

The second step is to compare the trees inferred 
from three taxon sets. All analyses excluded ATP8, 
ND4L and ND6. (1) All-species analysis using com-
plete taxon set. (2) Good-species analysis, excluding 
‘BadSeq’. (3) Short-species analysis, excluding long-
branched taxa detected from the all-species analysis. 
This step aims to detect the impact of incomplete data 
and long branch.

The third step analysis used only the ‘safe’ taxa. In 
this step, all taxa within ‘BadSeq’ were excluded even 
if they do not virtually affect the topology of other spe-
cies. It is learnt from experience that more missing or 
poorly-sequenced bases imply more potential errors in 
the superficially intact data. Potential pitfalls of incom-
pleteness (e.g. erroneous positions of these taxa per se) 
violate the main idea of this study. Long-branched taxa 
with low support are also to be excluded. In the present 
study, they are Aposthonia borneensis, Aposthonia ja-
ponica and Nocticola sp.. ‘Safe’ taxa comprise 85 species 
(Suppl. material 2: Table S1).

The fourth, also the final, step yields the phylogeny 
that is regarded as the formal result. Prior to MRBAYES, 
sequences of ‘safe’ taxa were re-aligned and concatenat-
ed. This new, 9912-base-long alignment, as final dataset, 
was also imported to ALIGROOVE to assess alignment 

ambiguity. This 85-species dataset is less ambiguous than 
the original one (Suppl. material 4). The resulted tree was 
used as the fixed topology in dating analyses.

Fossil calibration and dating

As calibrations, only two fossils fulfill the criteria of Par-
ham et al. (2011) and are suitable for the present study. 
The earliest known termite Valditermes brenanae cal-
ibrates the split between Cryptocercidae and Isoptera 
(minimum age 130.3 Ma, see Wolfe et al. 2016), as in 
Misof et al. (2014) and Evangelista et al. (2019). The ear-
liest known blattelline cockroach Piniblattella yixianen-
sis Gao et al., 2018 (Gao et al. 2018) calibrates the split 
between Blattellinae and Blaberidae. Piniblattella yixian-
ensis is used for calibration for the first time, setting a 
minimum age as 120.9 Ma (see Discussion). To observe 
the effect of this new calibration, I also ran an analysis 
without this fossil (i.e. only calibrated by V. brenanae) 
to compare with the two-fossil analysis. The minimum 
bounds of calibrated nodes were set to the minimum age 
of fossils. The minimum root age was set to 130.3 Ma, the 
age of the older calibration fossil. All maximum bounds 
were set to 412 Ma, the oldest age of Rhynie Chert, as 
justified in Evangelista et al. (2019).

Some studies used the so-called ‘roachoids’ (Eoblatto-
dea, see Li 2019) to calibrate Dictyoptera+sister (which 
is the root herein), based on the hypothesis that those am-
biguous fossils are stem members of Dictyoptera (Legen-
dre et al. 2015, Tong et al. 2015, Bourguignon et al. 2018, 
Evangelista et al. 2019). To detect the impact of such fos-
sils, I performed another dating analysis with the earliest 
‘roachoid’, namely Qilianiblatta namurensis Zhang et al., 
2012 (Zhang ZJ et al. 2012, Guo et al. 2013), thus three fos-
sil calibrations were used in this analysis. The radioisotopic 
age of the Q. namurensis-bearing stratum is unavailable, 
instead, a preliminary stratigraphic correlation gives latest 
Bashkirian to middle Moscovian (Trümper et al. 2020). 
Therefore, I used the top age of Moscovian (306.9 Ma).

I used the MCMCTREE program in PAML 4.9j (Yang 
2007) to estimate divergence times. Dating analyses used 
autocorrelated relaxed clock model and GTR+G model. 
Rate prior was set to 1 substitution per site per 100 Ma by 
reference to the empirical estimations (Papadopoulou et 
al. 2010, Andújar et al. 2012). Estimation of divergence 
times used the approximate method implemented in MC-
MCTREE. The first 20000 iterations were discarded as 
burn-in. 5000 samples were gathered, once every 200 it-
erations. A replicating MCMC was performed to check 
for convergence in TRACER.

Figure preparation

Trees are visualized using FigTree 1.4.3 (Andrew Ram-
baut, http://tree.bio.ed.ac.uk/software/figtree) and modi-
fied using Adobe Illustrator CC 2017.

http://tree.bio.ed.ac.uk/software/figtree
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Taxonomy

For the reader’s convenience and to enable a comparison 
of studies, familial taxonomy of cockroaches in this paper 
follows recent studies that are compared (e.g., Djernæs et 
al. 2015, Legendre et al. 2015, Wang et al. 2017, Bour-
guignon et al. 2018, Evangelista et al. 2019). It is notewor-
thy that recent molecular studies focusing on Blaberoidea 
raised subfamilies of Ectobiidae to families (Djernaes et 
al. 2020, Evangelista et al. 2020). Consequently, their Ec-
tobiidae is identical to the Ectobiinae herein.

Results

The 13-gene tree recovers a sistergroup relation-
ship between Aposthonia (Embioptera) and Nocticola 
(Blattaria), which is obviously erroneous regardless of 
posterior probability (Suppl. material 6). The 10-gene 
analyses removed this error (Suppl. material 7–9), and 
demonstrate that ATP8, ND4L and ND6 are detrimental 
to the analyses. The results from the all-species analysis 
(Suppl. material 7) and the good-species analysis (Sup-
pl. material  8) are very close, with some divergences 
in small clades, and the posterior probabilities are sim-
ilar in general. In the all-species analysis, three species 
have extremely long branches (Aposthonia borneensis, 
Aposthonia japonica and Nocticola sp.), and the pos-
terior probabilities of corresponding nodes are low. 
Excluding these species increases the general supports 
(Suppl. material 9).

The ‘safe’-taxa analysis yields higher posterior prob-
abilities (Suppl. material 10) than all analyses above. 
The final dataset, which is from the realignment of 
the ten genes of ‘safe’ taxa, yields the formal result 
(Fig.  2). The maximum-likelihood tree (log-likelihood 
= –155715.20) sampled from MCMC has only one to-
pological difference with Fig. 2: Neostylopyga rhom-
bifolia and Periplaneta brunnea are exchanged (not 
shown). The phylogeny recovers major splits in Dic-
tyoptera as Mantodea + (Corydiinae + (Blaberoidea + 
Blattoidea-Isoptera complex)). These major splits have 
at least 95% posterior probability. Owing to the absence 
of Nocticolidae and Latindiinae, the relationships in Co-
rydioidea are unknown.

The dating result of two-fossil-calibration analysis 
(without Q. namurensis) is regarded as the formal result 
of this paper (Fig. 3: middle), suggesting that the age of 
crown Dictyoptera is 191.08 Ma (95% credibility interval 
168.96–218.82 Ma), of crown Blattodea 171.2 Ma (95% 
CI 153.26–194.23 Ma). Qilianiblatta namurensis con-
siderably pushes the ages back (Fig. 3: top): the age of 
crown Dictyoptera is 270.01 Ma (95% CI 236.69–309.31 
Ma), of crown Blattodea 237.82 Ma (95% CI 204.46–
276.04 Ma). In comparison, there is little difference in the 
estimated ages between the two-calibration analysis and 
the one-calibration one (Fig. 3: middle vs. bottom). Even 
though it is insufficient to conclude that P. yixianensis is a 

calibration as competent as V. brenanae, P. yixianensis is 
at least harmless to dating analyses. The time trees show-
ing species are given in Suppl. material 11–13.

Discussion
Phylogeny of cockroaches

The relationship of major clades (suborder, superfamily, 
family, and subfamily) recovered herein is not identical 
to any previous studies. At the superfamily level, the sis-
tergroup relationship of Corydioidea (only represented by 
Corydiinae) to the rest of Blattodea is consistent with that 
in Wang et al. (2017) and Djernæs et al. (2015, in part), 
both of which used three mitochondrial and at least two 
nuclear gene fragments, whereas conflicting with other 
recent phylogenies (Djernæs et al. 2015 in part, Legendre 
et al. 2015, Bourguignon et al. 2018, Evangelista et al. 
2019). The superfamilial relationship of cockroaches is in 
dispute. On the other hand, the monophyletic Blaberoidea 
and the monophyletic blattoid complex (Blattoidea and 
Isoptera) are always supported.

Corydioidea are always undersampled. Species of 
Nocticolidae, Latindiinae, and Corydiidae incertae sedis 
(e.g. Ctenoneura) are lacking. Although one mitogenome 
of Nocticola is available, it is hardly serviceable unless 
the long branch is broken up by increased sampling (Poe 
2003). Nonetheless, the transcriptome data support a 
monophyletic Corydioidea that include Corydiidae and 
Nocticolidae (Evangelista et al. 2019).

In the blattoid complex, only the sistergroup relation-
ship between Cryptocercidae and Isoptera is universally 
recognized. These taxa constitute Xylophagodea (Engel 
2011). The new phylogeny recovers Xylophagodea as sis-
ter to the remaining blattoid complex, of which the inter-
nal relationship is (Blattidae + Tryonicidae) + (Anaplec-
tidae + Lamproblattidae). This is significantly different 
from other studies. Three major groups of Blattoidea are 
still undersampled, namely, Anaplectidae, Lamproblatti-
dae and Tryonicidae. In addition, some mysterious taxa 
of Blattoidea incertae sedis (e.g. Oulopteryx) have not yet 
been sampled.

The paraphyly of Ectobiidae with respect to Blaberidae 
is a consensus among studies; the present study is not an 
exception. However, the relationships among Blaberidae 
and ectobiid subfamilies are conflicting among studies, 
especially in the positions of Ectobiinae and Pseudophyl-
lodromiinae. The Ectobiinae contributes a weak point in 
the new phylogeny (pp = 79%), i.e. the node of Ectobiinae 
+ (Blattellinae + Blaberidae). Regardless of the Nyctibo-
rinae, which is not included in the final phylogeny here-
in, the sistergroup relationship between Blattellinae and 
Blaberidae is also supported in Bourguignon et al. (2018) 
and Evangelista et al. (2019, 2020). Although the consid-
erably diversified Blaberidae are typically densely sam-
pled, the phylogeny of them recovered by various studies 
is inconsistent.
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Figure 2. Bayesian phylogeny of Dictyoptera inferred from ten protein-coding genes of 85 mitogenomes, excluding the third base 
of codon. Posterior probabilities are shown in percentage otherwise are 100%. Clades of superfamilies or higher rank are numbered, 
as indicated by black background in the key. Species of major taxonomic identities (all are clades) are coloured, as indicated in the 
key. Subfamilies of Blattidae and Blaberidae are labeled; asterisked ones are not monophyletic. For comparison with trial analyses, 
see Suppl. material 6–10.
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Figure 3. Time trees of Dictyoptera estimated by MCMCTREE. Two-calibration result (middle) is regarded as the formal result 
of this study. Calibrated nodes are coloured, with vertical bars denoting bounds. Calibrations: Qilianiblatta namurensis (green), 
Valditermes brenanae (red), Piniblattella yixianensis (blue). Abbreviations: A[naplectidae], Dictyop[tera], L[amproblattidae], T[ry-
onicidae], Xyloph[agodea]. For detailed phylogenies showing species, see Suppl. material 11–13.
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A challenge to all molecular phylogenies is the recon-
ciliation with morphological, behavioral, and other evi-
dence. For example, oothecal property and rotation be-
havior are various and the taxonomic distribution of them 
in Blaberoidea is comparatively well known (McKittrick 
1964, Roth 1967, 1968a, Bell et al. 2007). Note that the 
rotation behavior assigned to Ectobiinae in Evangelista et 
al. (2019) is contrary to the literature. The parsimonious 
scenario is that Pseudophyllodromiinae are sister to, or 
paraphyletic with respect to, the remaining Blaberoidea, 
which constitute a clade (e.g. McKittrick 1964, Klass and 
Meier 2006). The present study supports this scenario but 
the posterior probabilities of the “remaining Blaberoidea” 
node is relatively low (pp = 79%). Other studies, in which 
the phylogenies do not recover Pseudophyllodromiinae 
as sister to the remaining Blaberoidea, imply either par-
allel evolution of oothecal rotation in Ectobiinae and in 
Blattellinae + Nyctoborinae + Blaberidae, or an ances-
tral state of oothecal rotation in Blaberoidea and a loss in 
Pseudophyllodromiinae. At least, the relationship of Ec-
tobiinae and Pseudophyllodromiinae to other Blaberoidea 
is debatable.

Fossil calibrations and divergence times

The only appropriate fossil calibration in Blattaria in the 
present study is Piniblattella yixianensis Gao et al., 2018 
(Gao et al. 2018), which is used as a calibration for the 
first time. In the following, this fossil calibration is justi-
fied according to the five criteria in Parham et al. (2011).

Criteria 1 and 4. Information about the fossil-bear-
ing stratum and museum collection is provided in Gao 
et al. (2018).

Criterion 2. Regardless of the determination of genus 
(which is in dispute, see Hinkelman 2019), P. yixianen-
sis belongs in Blattellinae as evidenced by the oothecal 
rotation, reproduction type oviparity B, and the wing ve-
nation pattern, as explained below. Rotation feature and 
physical property of ootheca are crucial to the family-lev-
el phylogeny of cockroaches: the “advanced rotation” 
(i.e. rotating the ootheca and containing the anterior eggs 
inside vestibulum) is considered as a significant apomor-
phy in cockroaches, and distributed in Blaberoidea oth-
er than Pseudophyllodromiinae (McKittrick 1964, Roth 
1967, 1968a, Bell et al. 2007). The rotation of the ooth-
ecae of P. yixianensis is unlikely due to taphonomic pro-
cess: all preserved oothecae are horizontally positioned, 
none is perpendicularly or randomly positioned (Gao et 
al. 2018, Hinkelman 2019). The “primitive rotation” of 
Corydiidae is also ruled out: in the primitive rotation, the 
anterior eggs are outside the abdomen and the ootheca is 
obliquely positioned (Roth 1967)  –  this is not the case 
with P. yixianensis. Another difference between primitive 
and advanced rotation is the presence and absence of the 
flange, but which cannot be clearly observed in those 
fossils. In the phylogenies of the present study and some 
previous studies (e.g., McKittrick 1964, Klass and Meier 

2006), Pseudophyllodromiinae are sister to or paraphy-
letic with the remaining Blaberoidea, supporting that the 
advanced rotation is autapomorphic for Blaberoidea ex-
cluding Pseudophyllodromiinae, and therefore P. yixian-
ensis can at least calibrate the node of crown Blaberoidea 
(regardless of other evidence discussed below). Howev-
er, other studies support several origins of the advanced 
rotation in Blaberoidea or loss of the advanced rotation 
in Pseudophyllodromiinae (e.g., Wang et al. 2017, Bour-
guignon et al. 2018, Evangelista et al. 2019). Under this 
hypothesis and regardless of other evidence (discussed 
below), P. yixianensis may only calibrate the split be-
tween Blaberoidea and the sister group with caution.

The reproduction type of P. yixianensis is oviparity 
B: (1) during reproduction, female cockroaches have a 
period of carrying the ootheca (if present) outside, but 
only the oviparity B carries the ootheca externally until 
hatching; other types only carry shortly before ovipo-
sition (oviparity A) or before retraction (ovoviviparity 
and viviparity) (Roth 1967, 2003, Bell et al. 2007), and 
have much less chance to leave fossils. Oviparity B like-
ly contributes a lot to the preservation of ootheca-bear-
ing fossils like P. yixianensis. (2) Based on the author’s 
observation during collecting, the oviparity A ootheca is 
easily dropped when the cockroach is caught, and almost 
certainly detached in the end. In comparison, some of the 
oviparity B oothecae remain attached in the abdomen 
even when the cockroach is preserved. This implies that 
it is unlikely that oviparity A cockroaches preserve fossils 
carrying oothecae, but oviparity B cockroaches may. (3) 
The oothecal keel of P. yixianensis is relatively underde-
veloped and unornamented (Gao et al. 2018, Hinkelman 
2019), and so accords with the characteristics of oviparity 
type B (Roth 1968a, 1971, Bell et al. 2007). Among liv-
ing cockroaches, only some species of Blattella, Chorisia 
and Onycholobus are known of both the oviparity type B 
and the advanced rotation (McKittrick 1964, Roth 1967, 
1968a, 1971, 1983, 2003, Bell et al. 2007). Chorisia and 
Onycholobus are not included in analyses here, but the 
former is considered as closest to Blattella (Roth 1983), 
while the latter has the ootheca resembling that of Blat-
tella (Roth 1971).

However, oviparity B is homoplastic among 
Blaberoidea. Roth (1968b) found Lophoblatta, a pseu-
dophyllodromiine genus, carrying the ootheca until the 
eggs hatch, but not rotating the ootheca. This discovery 
demonstrated that the oviparity B originated independent-
ly more than once within Blaberoidea. According to the 
reasonable hypothesis of Roth (1968a), oviparity B is the 
intermediate form between the ovoviviparity and the ple-
siomorphic oviparity A, i.e., ovoviviparity derived from 
oviparity B, which derived from oviparity A. Ovovivipar-
ity occurs in most Blaberidae (with advanced rotation) 
but also, homoplastically, in two genera of Blattellinae, 
which rotate the ootheca (Roth 1982, 1984: Stayel-
la, Roth 1995: Pseudoanaplectinia), and two genera of 
Pseudophyllodromiinae, which do not rotate the ootheca 
(Roth 1989: Sliferia, Roth 1997: Pseudobalta) (see also 
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a review by Djernæs et al. 2020). Provided that Roth’s 
hypothesis is true, the homoplasy of ovoviviparity further 
demonstrates that the oviparity B is highly homoplastic.

Accordingly, it appears that Blaberoidea are preadapt-
ed to the advanced rotation and oviparity B (consequently 
ovoviviparity), but as far as known, these two features 
only co-occur in Blaberidae and Blattellinae. Blaberidae 
and Blattellinae were recovered as sister groups (Bour-
guignon et al. 2018 and the present study), or form a 
clade together with Nyctiborinae (Klass and Meier 2006, 
Evangelista et al. 2019), which is not included in analyses 
herein. This implies that species of the clade Blaberidae 
+ Blattellinae (or Blaberidae + Blattellinae + Nyctibori-
nae) are more preadapted to allow (if not achieved) the 
co-occurrence of advanced rotation and oviparity B (con-
sequently ovoviviparity). Therefore, the combination of 
advanced rotation and oviparity B may tentatively place 
P. yixianensis into that clade but outside of Blaberidae.

Other characters preserved in the fossils of P. yixian-
ensis are barely discernible except the wing venation. 
The forewing of P. yixianensis conforms to the general 
form of Blattellinae (see Rehn 1951, Li et al. 2018): ScP 
with few branches, R pectinate proximally and dichot-
omous or irregular distally, M and CuA both developed 
and not essentially pectinate, claval furrow with sharp 
apical turn, and claval veins diagonal. These traits are 
distinct from other subfamilies of Ectobiidae. The hind-
wing has a simple ScP, a pectinate RA with four branches 
or so, a non-pectinate RP, a simple and feeble M, and a 
nearly pectinate CuA (Gao et al. 2018). This combina-
tion of hindwing traits is not characteristic of any taxon, 
although these traits are more common in Blaberoidea, 
particularly Blaberidae (see Rehn 1951, Li et al. 2018). 
Unfortunately, the polarity of wing venation characters 
above is barely clear, so that it is premature to conclude a 
phylogenetic position through these similarities in vena-
tion. It is noteworthy that both the tegmen and hindwing 
of P. yixianensis exhibit a developing characteristic pos-
terior branch of R, i.e., the apicoposterior part of R is a 
branch with terminal branching only. Most cockroaches 
do not have a characteristic posterior branch (cpb), and 
this specialization is homoplastically derived among 
cockroaches, principally Ectobiidae (see Rehn 1951, Li 
et al. 2018). Nonetheless, the cpb and developing cpb 
vary in morphology, whereas the branching pattern of P. 
yixianensis is found in Blattella and related genera such 
as Episymploce, but not seen in others (Li et al. 2018, 
and unpublished observation). This evidence reinforces 
the hypothesis that P. yixianensis belongs in Blattellinae, 
although it is premature to conclude that P. yixianensis 
is a close relative of Blattella or even sister to Blattella.

So far, the evolution of reproduction type, ootheca 
handling behaviour and wing venation of cockroaches 
is not well understood, and might be more complicated 
than currently known. In view of this, the phylogenetic 
position of P. yixianensis is not securely settled. Never-
theless, P. yixianensis can be tentatively considered as a 
member of Blattellinae, and thus calibrates the node of 

Blattellinae + sister (Blaberidae herein). In summary, P. 
yixianensis as a calibration should be used with caution, 
and comparative analyses with/without this fossil should 
be performed to accommodate its uncertainty.

Criterion 3. Reconciliation between molecular and 
morphological phylogenies is partially achieved. As 
mentioned above, regardless of the Nyctiborinae that is 
not included in the final data, the sistergroup relationship 
between Blattellinae and Blaberidae is supported herein 
and in recent big data analyses (Bourguignon et al. 2018, 
Evangelista et al. 2019, 2020), and Ectobiinae and Pseu-
dophyllodromiinae are not nested in the clade of Blattelli-
nae + Blaberidae + Nyctiborinae. In the most compre-
hensive ever morphological (and ethological) phylogeny 
of Dictyoptera (Klass and Meier 2006), the above rela-
tionships within Blaberoidea are also recovered, except 
the absence of Ectobiinae. According to the phylogenetic 
discussion in McKittrick (1964), the Ectobiinae is nest-
ed in the clade of Blattellinae + Blaberidae + Nyctibori-
nae (Fig. 1), but that study is somewhat outdated and not 
strictly phylogenetic. There is a lack of recent morpho-
logical phylogeny covering all major groups; therefore, 
it is impossible to thoroughly compare the morphological 
phylogeny with the molecular phylogeny.

Criterion 5. Piniblattella yixianensis is from Huang-
banjigou, Beipiao, Liaoning, northeastern China (Gao et 
al. 2018). Isotopic age of the fossiliferous layers in Huang-
banjigou ranges from 121.2 Ma to 129.8 Ma (Swisher et 
al. 1999, Yang et al. 2007). However, the horizontal cor-
relation between this fossil and the radiometric samples 
is unknown, and the radiometric sampling is insufficient, 
therefore the age range above does not necessarily repre-
sent the age of fossils. I conservatively use the age of the 
overlying stratum (of top Yixian Formation), 120.9 Ma 
(Smith et al. 1995), as the minimum age of P. yixianensis.

The other fossil for calibration, V. brenanae, has been 
frequently used for Xylophagodea (e.g., Misof et al. 
2014, Bourguignon et al. 2018, Evangelista et al. 2019). 
Its identity as a termite is secured by the presence of basal 
suture (Jarzembowski 1981), one of the defining charac-
ters (autapomorphies) of Isoptera (Ax 1999, Krishna et al. 
2013). Its validity as a calibration was justified by Wolfe 
et al. (2016), and I have no comments on this fossil.

Fossil calibrations contribute considerably to the 
discrepancy in the age estimation among studies. The 
‘roachoid’ fossils, remarkably, were frequently assigned 
as “stem Dictyoptera” (e.g., Legendre et al. 2015, Tong 
et al. 2015, Bourguignon et al. 2018, Evangelista et al. 
2019). Although the ambiguity of them and alternative 
interpretations were considered (e.g., Kjer et al. 2015, 
Bourguignon et al. 2018, Li and Huang 2019), a formal 
report on the impact of them is lacking. Because of the 
same assignment of ‘roachoid’ fossils, the age estimates 
with three calibrations herein (which is only for compar-
ison) are close to that in Bourguignon et al. (2018) and 
Evangelista et al. (2019) (Permian origin of crown Dic-
tyoptera and Triassic origin of crown Blattodea), and only 
somewhat younger than that in Legendre et al. (2015). 



dez.pensoft.net

Xin-Ran Li: Cockroach phylogeny and dating10

‘Roachoid’ fossils often play a decisive role in the dat-
ing of cockroaches, pushing the age estimates older. In 
comparison, the formal age estimates herein (two fossil 
calibrations) are close to that in Misof et al. (2014), both 
studies do not use ‘roachoid’ fossils as calibrations, sug-
gesting Jurassic origins of crown Dictyoptera and crown 
Blattodea. Without the ‘roachoids’, other fossils will take 
over them as decisive calibrations and result in various, 
and usually younger, estimations (e.g., Wang et al. 2017, 
Bourguignon et al. 2018: fig. S12). A comparison of age 
estimates among studies is shown in Fig. 4.

Unfortunately, many of the fossil calibrations other 
than ‘roachoids’ are also unjustified. Subsequently, com-
parisons among the age estimates from various studies 
could be pointless. For example, the “stem Mantodea” 
Homocladus grandis (Djernæs et al. 2015, Bourguignon 
et al. 2018) is highly questionable (Evangelista et al. 2019 
and references therein); the “oldest Mantoidea fossil” 
Prochaeradodis enigmaticus (Djernæs et al. 2015, Wang 
et al. 2017) may be a cockroach (Cui et al. 2018); the 
“blattid” Balatronis libanensis is unlikely a true cock-
roach (Blattaria), not to mention Blattidae (Evangelista 

et al. 2017, Qiu L et al. 2020a); the “Diploptera fossils” 
(Bourguignon et al. 2018) cannot be identified to Diplop-
tera and the higher-rank placement of those fossils also 
remains undetermined (Evangelista et al. 2017, Li et al. 
2017); the “first modern cockroach” Zhujiblatta anofiss-
ilis (Bourguignon et al. 2018) is phylogenetically unset-
tled and has to be redescribed, which I am preparing else-
where. Even more surprisingly, an unnamed “Epilampra 
fossil” found in an extant cockroach database was used 
(Bourguignon et al. 2018).

A critical review of cockroach fossil calibrations was 
not achieved until Evangelista et al. (2017), who rec-
ommended four cockroach fossils for node calibration. 
Evangelista et al. (2019) discarded one of them and re-
tained corydiid Cretaholocompsa montsecana Marti-
nez-Delclos, 1993, blaberid “Gyna” obesa (Piton, 1940) 
and ectobiid Ectobius kohlsi Vršanský et al., 2014. How-
ever, these fossils are still debatable.

Cretaholocompsa montsecana was determined as a 
close relative of extant Holocompsa (Martinez-Delclos 
1993), and used as a calibration for corydiid nodes (Leg-
endre et al. 2015, Wang et al. 2017, Evangelista et al. 

Figure 4. Comparison among the ages estimated in various studies. The fossils are: Valditermes brenanae Jarzembowski, 1981; Pini-
blattella yixianensis Gao et al., 2018; Nodosigalea burmanica Li & Huang, 2018; Cretaperiplaneta kaonashi Qiu et al., 2020; Stegob-
latta irmgardgroehni Anisyutkin & Gröhn, 2012. Abbreviation: ALTB, Anaplectidae + Lamproblattidae + Tryonicidae + Blattidae.



Dtsch. Entomol. Z. 69 (1) 2022, 1–18

dez.pensoft.net

11

2019). However, Cretaholocompsa significantly differs 
from Holocompsa in the presence of large spines along 
the ventral margin of midfemora (other legs unknown) 
(Qiu L et al. 2020b). Besides, according to recent accounts 
of Corydiidae, such spines are absent from all femora in 
this family (e.g., Estrada-Alvarez and Guadarrama 2012, 
Hopkins 2014, Crespo et al. 2015, Qiu L 2017, Qiu L et 
al. 2017, 2019a, 2019b, 2020b).

“Gyna” obesa was used as a calibration for blaberid 
nodes (Bourguignon et al. 2017, Evangelista et al. 2019). 
Evangelista et al. (2017) identified this fossil to Blaberi-
dae based on (1) the stout cerci, (2) approximately paral-
lel edges of tegmina, (3) elongated CuP, (4) shape of the 
pronotum, (5) asymmetrical male subgenital plate and (6) 
large body size. Although this fossil appears to be blaber-
id in overall appearance, the evidence above is weak or 
invalid to place “Gyna” obesa in Blaberidae. First, as 
acknowledged by Evangelista et al. (2017), traits 1, 2 
and 3 are homoplastic with Blattidae. Second, the shape 
of the pronotum is not entirely clear (Evangelista et al. 
2017). Third, the subgenital plate is not clearly discern-
ible: according to the figures in Evangelista et al. (2017), 
the “concave margin” is implausible in favour of poor 
preservation. Besides, the subgenital plate appears to be 
large and cover three segments as in extant female cock-
roaches, in comparison to the male subgenital plate that is 
as small as one normal segment; therefore, the specimen 
may be a female. Fourth, large-sized species are common 
in Blattidae and Corydiidae in addition to Blaberidae.

Ectobius kohlsi was identified based on a comparison 
with extant species (Vršanský et al. 2014). However, the 
preserved characters are not unique enough to indicate the 
genus; i.e., diagnostic characters of Ectobius or of Ectobi-
inae are not clearly observed, e.g., elongate male genital 
elements (Roth 2003) and a pinnate R+M+CuA system of 
tegmina (unpublished observation). Instead, spot-and-line 
macula patterns on the pronotum and forewings are com-
mon in Ectobiinae and Pseudophyllodromiinae. Vršanský 
et al. (2014) reported a female with valvate subgenital 
plate. If this is true, then this species likely belongs to 
Pseudophyllodromiinae because suchlike females do ex-
ist in Pseudophyllodromiinae (e.g. Euphyllodromia, Ani-
syutkin 2011). If this fossil is a male, then it is more likely 
to be a member of Pseudophyllodromiinae, some genera 
of which have a valvate subgenital plate in males (e.g. 
Balta, Qiu ZW et al. 2017).

Interestingly, the fossil discarded by Evangelista et 
al. (2019), Cariblattoides labandeirai Vršanský et al., 
2011, is likely to be a genuine pseudophyllodromiine 
species, even though the genus is uncertain. According 
to Vršanský et al. (2011b), the forewing of C. labandeirai 
bears venational characters in common with most Pseu-
dophyllodromiinae: ScP simple and short, R essentially 
pectinate, M pectinate and more developed than CuA, 
claval veins oblique or diagonal (see Rehn 1951, Li et 
al. 2018). The venation alone is a weak indicator of the 
taxonomic identity, whereas the combination of venation 
and macula pattern is stronger reasoning. Unfortunately, 
C. labandeirai is not suitable for calibrating Pseudophyl-

lodromiinae + sister (= Blaberoidea herein) even if its in-
clusion in Pseudophyllodromiinae is proven, because it 
would be suppressed by the older fossil, P. yixianensis, 
which already calibrates an internal node.

Only one true-cockroach fossil is used as a calibration 
in the present study, but this does not imply that other 
fossils are substandard. Every informative fossil (with 
high phylogenetic resolution and ascertained geological 
context) has the potential to be a competent calibration, 
but the incorporation of them is hampered by the fact 
that relevant living species are under-sampled or have 
not yet been sequenced. Noteworthy examples of fossils 
include those of extant genus, e.g. Supella (Nemosupel-
la) miocenica Vršanský et al., 2011 (see Vršanský et al. 
2011a), and those of Corydioidea, e.g., Proholocompsa 
fossilis (Shelford, 1910) (see Gorokhov 2007), Parae-
uthyrrhapha groehni Anisyutkin, 2008 (see Anisyutkin 
2008), Crenocticola Li & Huang, 2019 (see Li and Huang 
2019). These fossils could become powerful calibrations 
for smaller clades (younger nodes) if the data of related 
extant species are available, otherwise they can only cal-
ibrate larger clades (older nodes), and become ineffective 
when older fossils (e.g. those used herein) calibrate the 
same or internal nodes.

Conclusions

Based on published mitochondrial genomes, the present 
study infers a phylogeny of cockroaches and termites as 
Corydiinae + (((Cryptocercidae + Isoptera) + ((Anaplec-
tidae + Lamproblattidea) + (Tryonicidae + Blattidae))) 
+ (Pseudophyllodromiinae + (Ectobiinae + (Blattellinae 
+ Blaberidae)))). The sistergroup relationship between 
(Cryptocercidae + Isoptera) and (Anaplectidae + Lam-
problattidae + Tryonicidae + Blattidae) is recovered for 
the first time. This study suggests that the phylogenetic 
reconstruction of cockroaches is in urgent need of the 
data of Corydioidea (particularly the Nocticolidae), of 
which the phylogenetic relationships are poorly known. 
This study dates the crown Dictyoptera to early Jurassic, 
and crown Blattodea to middle Jurassic. Using the am-
biguous ‘roachoid’ fossils to calibrate Dictyoptera+sister 
pushes these times back to Permian and Triassic. Given 
currently available data and fossils, few nodes within true 
cockroaches can be calibrated. This can be overcome by 
discovering more fossils, or by sampling fossil-related 
species to allow the incorporation of well-justified fossils. 
In view of the scarcity of suitable fossils for calibration, 
the latter approach may be more promising.
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