Review of the world species of *Paroplitis* Mason, 1981 (Hymenoptera, Braconidae, Microgastrinae), with description of three new species

Shunpei Fujie¹, George Japoshvili²,³, Jose Fernandez-Triana⁴

¹ Osaka Museum of Natural History, 1-23 Nagaikoen, Higashisumiyoshi, Osaka, 546-0034 Japan
² Institute of Entomology, Agricultural University of Georgia, Agmashenebeli Alley #240, Tbilisi – 0159, Georgia
³ Invertebrate Research Center, Telavi – 2200, Georgia
⁴ Canadian National Collection of Insects, 960 Carling Ave., Ottawa, ON K1A 0C6 Canada

http://zoobank.org/CCD0B21C-371A-4CD2-89B7-15DB1C8DED3A
Corresponding author: Shunpei Fujie (shunpei.fujie@gmail.com)

Academic editor: D. Zimmermann ✦ Received 14 October 2020 ✦ Accepted 27 November 2020 ✦ Published 5 January 2021

Abstract

The world species of the microgastrine genus *Paroplitis* (Hymenoptera: Braconidae) are revised. Three new species are described, *P. horticola* Fujie & Fernandez-Triana, sp. nov. and *P. japonicus* Fujie & Fernandez-Triana, sp. nov. from Japan and *P. kakhetiensis* Fujie, Japoshvili & Fernandez-Triana, sp. nov. from Georgia. *P. vietnamensis* van Achterberg & Fernandez-Triana, 2013 is re-described, based on additional specimens. *P. wesmaeli* Ruthe, 1860 is recorded from Georgia for the first time. A key to the nine known species (eight described and one undescribed) of the genus is provided.

Key Words

Palaearctic, taxonomic revision, world key, parasitoid wasps, Japan, Georgia

Introduction

The subfamily Microgastrinae (Hymenoptera: Braconidae) is a large group of parasitoid wasps living on the larvae of Lepidoptera (Mason 1981, Fernandez-Triana et al. 2020). The genus *Paroplitis* Mason, 1981 is a rather infrequently collected taxon in the subfamily which is poorly represented in collections. This genus was erected to accommodate a group of species in the Microgastrini sensu Mason (1981) with strongly flattened mesosoma, short antenna, short and robust legs, smooth metanotum and propodeum usually with a transverse carina. It is distributed in the Nearctic, Palaearctic and Oriental Regions, with five described species previous to this publication (Fernandez-Triana et al. 2013, 2020).

As a result of studies being carried out by the authors on the Microgastrinae fauna of Georgia (GJ and JFT), new material, representing one additional species of *Paroplitis*, was discovered. Additionally, until now, no species were known in the eastern Palaearctic Region; however, ongoing research on the Microgastrinae fauna of Japan (SF and JFT), has revealed two new species for Japan. This paper describes these three new species and provides an updated key to the world species.

Materials and methods

Specimens of the new species were collected by Malaise traps and yellow pan traps in Japan and Georgia. The material has been deposited in the repositories listed below.

AUG Institute of Entomology, Agricultural University of Georgia, Tbilisi, Georgia;
CNC Canadian National Collection of Insects, Ottawa, Canada;
HNHM Hungarian Natural History Museum, Budapest, Hungary;
KPMNH Kanagawa Prefectural Museum of Natural History, Odawara, Japan;
Morphological terms and measurements follow Mason (1981), Huber and Sharkey (1993), Whitfield (1997), Karlsson and Ronquist (2012) and Fernandez-Triana et al. (2014). The abbreviations F2, F3, F14 and F15 refer to antennal flagellomeres 2, 3, 14 and 15; T1, T2 and T3 are used for metasomal mediotergites 1, 2 and 3; and L and W refer to length and width, respectively. Abbreviations for standard measurements of distances between compound eye and ocelli are as follows: POL – Posterior Ocellar Line, OOL – Ocular Ocellar Line, OD – Ocellar Diameter (of a posterior ocellus). For every diagnostic description, we state the number of specimens we measured (using “n = number”), which always included the holotype and some, but not all, paratypes.
Photos of specimens were taken with Keyence VHX-1000 and VHX-7000 Digital Microscopes, using a lens with a range of 10–130×. Multiple images were taken of the structures through the focal plane and then combined to produce a single in-focus image using the software associated with the Keyence System. Plates were prepared using Microsoft PowerPoint 2010 and saved as .TIF files.

A map with the distribution of the species was generated using SimpleMappr (Shorthouse 2010).

Results and discussion

We recognise eight species of Paroplitis worldwide, including three new species described in the present paper.

Key to the world species of the genus Paroplitis [Female specimens]

1 T1 and T2 entirely sculptured (Figs 14, 19) .. 2
 - T1 smooth on posterior half (except for P. wesmaeli), T2 mostly smooth and shiny (at most with few, fine striae on lateral margins) (Figs 5, 22, 27) ... 4

2(1) F15 about 2.0× as long as wide; metafemur 3.5× as long as wide [Oriental Region: India; undescribed species incorrectly identified as P. vietnamensis in Ahmed (2017)]................................. Paroplitis sp.
 - F15 1.2–1.6× as long as wide (Fig. 15); metafemur 2.7–3.2× as long as wide (Fig. 12) [Palaearctic Region] 3

3(2) Propodeum evenly rugose on its entire surface, without distinctive carinae [western Palaearctic Region: Austria; known from single locality at 2,400 m altitude] ... P. rugosus Papp, 1991
 - Propodeum smooth at least anteriorly, with distinct median and transverse carinae (Fig. 14) [eastern Palaearctic Region: Japan] ... P. japonicus Fujie & Fernandez-Triana, sp. nov.

4(1) Fore wing areolet quadrangular and relatively large, its maximum height 1.1× vein r length; fore wing with vein 2CuA tubular on its anterior 0.3–0.5 [Nearctic Region: Canada (British Columbia, Yukon) and United States (Alaska)]
 - Fore wing with areolet triangular and relatively small, its maximum height at most 0.7× vein r length, usually much less (Figs 4, 21, 29); fore wing with vein 2CuA entirely nebulous [Palaearctic or Oriental Regions] .. 5

5(4) Scape, tegula, humeral complex and legs entirely yellow (except for anterior 0.5–0.7 of metacoxa which is brown); fore wing with vein R1 as long as or longer than pterostigma length and much longer than distance delimited between end of vein R1 and end of vein 3RSb [Oriental Region: Philippines, Vietnam] ... P. luzonicus Mason, 1981
 - Scape, tegula, humeral complex and most of legs entirely brown to black; fore wing with vein R1 shorter than pterostigma length and same length (at most, slightly larger) as distance delimited between end of vein R1 and end of vein 3RSb (Figs 4, 21, 29) ... 6

6(5) Propodeum with a distinct areola medioposteriorly (Fig. 22) [western Palaearctic Region: Georgia; known from single locality at 1,840 m altitude] .. P. kakhetiensis sp. nov. Japoshvili, Fujie & Fernandez-Triana, sp. nov.
 - Propodeum without a distinct areola medioposteriorly (Fig. 5) .. 7

7(6) Propodeum usually without trace of transverse carina (although very rarely a more or less complete carina may be present); fore wing with areolet very small, its maximum height 0.2× vein r length, its maximum width 0.2× vein r length [western Palaearctic Region: Azerbaijan, Belgium, Finland, France, Georgia, Germany, Hungary, Poland, Romania, Russia (Krasnodar Kray), Sweden, Switzerland, Ukraine and United Kingdom] ... P. wesmaeli (Ruthe, 1860)
 - Propodeum with a more or less complete and defined transverse carina; fore wing with areolet larger, its maximum height 0.3–0.7× vein r length, its maximum width 0.4–0.7× vein r length (Figs 4, 29) [eastern Palaearctic and Oriental Regions] .. 8

8(7) Posterior ocelli comparatively larger, OOL/OD = 1.9–2.3, POL/OD = 1.4–1.5 (Fig. 9); F2 comparatively stouter, 1.1–1.3× as long as wide (Fig. 7); fore wing with areolet smaller, its maximum height 0.3–0.4× vein r length, its maximum width 0.4–0.6× vein r length (Fig. 4); longest setae on ovipositor sheath much longer than maximum width of ovipositor sheath (Fig. 11) [eastern Palaearctic Region: Japan] ... P. horticola Fujie & Fernandez-Triana, sp. nov.
 - Posterior ocelli comparatively smaller, OOL/OD = 2.3–2.6, POL/OD = 1.6–1.8 (Fig. 32); F2 comparatively slender, 1.5–1.6× as long as wide (Fig. 31); fore wing with areolet larger, its maximum height 0.4–0.7× vein r length, its maximum width 0.6–0.7× vein r length (Fig. 29); longest setae on ovipositor sheath, at most, slightly longer than maximum width of ovipositor sheath (Fig. 33) [Oriental Region: Vietnam] P. vietnamensis van Achterberg & Fernandez-Triana, 2013
Taxonomic treatment of species

Paroplitis beringianus Mason, 1981

Paroplitis horticola Fujie & Fernandez-Triana, sp. nov.

Description. A detailed description of the species and images are available in Mason (1981) and Fernandez-Triana et al. (2013).

Hosts. Unknown.

Paroplitis horticola Fujie & Fernandez-Triana, sp. nov.

http://zoobank.org/ECFB19F0-1347-40C2-A972-CC2353FD6769

Figs 3–11

Paroplitis beringianus Mason, 1981

Other specimens examined. 1 female (CNC). Canada: YT, Top of the world Highway, Km 82, 19.VII.2006, 64°05.411’N, 140°57.048’W, sweeping Clover along road, Goulet & Boudreault, HYM00000543.

Description. A detailed description of the species and images are available in Mason (1981) and Fernandez-Triana et al. (2013).

Hosts. Unknown.

Distribution. Eastern Palearctic: Japan (Hokkaido).

Etymology. Named “horticola” because type specimens were collected from a Malaise trap set in a garden.

Paroplitis japonicus Fujie & Fernandez-Triana, sp. nov.

http://zoobank.org/2A3E63CA-5480-4366-B8B5-C295DC6B6452

Figs 12–19

Diagnostic description. Female (n = 7). Body length: 2.1–2.5 mm; fore wing length: 1.9–2.2 mm; F2 L/W: 1.3–1.6×; F14 L/W: 1.3–1.6×; F15 L/W: 1.2–1.6×; F2 L/F14 L: 1.1–1.3×; OOL/ OD: 1.9–2.3×; POL/OD: 1.4–1.5×. Fore wing with vein 2CuA entirely nebulous; vein R1 shorter than pterostigma length and same length or a little longer than distance delimited between end of vein R1 and end of vein 3RSb. Fore wing with areolet triangular and relatively large, its maximum height 0.4–0.6× vein r length, its maximum width 0.7–0.9× vein r length. Propodeum mostly smooth and shiny dorsally, with some rugosity longitudinally and along median transverse carina; median longitudinal carina complete; at least on anterior 0.5; transverse carina carina more or less developed. Metafemur L/W: 2.6–2.8×. Anterior 0.5 of T1 irregularly rugose, at least laterally, rest of T1 and T2 mostly smooth; T1 median length 1.8–2.0× its width at posterior margin; T2 width at posterior margin 2.0–2.2× its median length. Metatibia L: 0.74–0.84 mm. Metatibia L/ovipositor sheath L: 2.0–2.6×. Ovipositor sheath L: 0.31–0.38 mm. Maximum length of setae on ovipositor sheath much longer than maximum width of ovipositor sheath.
Body dark brown. Mouth parts, antenna, humeral complex, wing veins and most of legs brown. Trochantellli, apical part of pro- and mesofemora, pro- and mesotibiae and tarsi, anterior 0.2 of metatibia and basal sternites yellowish-brown. Palpi pale yellow.

Male. Similar to female, except for flagellomeres with two ranks of placodes; F2 L/W: 2.5×; F14 L/W: 2.3×; F15 L/W: 2.2×.

Hosts. Unknown.

Distribution. Eastern Palaearctic: Japan (Honshu, Kyushu, Yakushima).

Etymology. The name refers to the country where the species is found.

Paroplitis kakhetiensis Japoshvili, Fujie & Fernandez-Triana, sp. nov.

http://zoobank.org/6A970B8F-A95B-43BF-9B46-35A1F1BF21C9

Figs 20–27

Description. Female (n = 1). Body length: 2.4 mm. Fore wing length: 2.4 mm. F2 L/W: 1.4×. F14 L/W: 1.3×. F15 L/W: 1.3×. F2 L/F14 L: 1.2×. OOL/OD: 2.1×. POL/OD: 1.4×. Fore wing with vein 2CuA entirely nebulous; vein R1 shorter than pterostigma length and a little longer than distance delimited between end of vein R1 and end of vein 3RSb. Fore wing with areola triangular and relatively small, its maximum height 0.3× vein r length, its maximum width 0.5× vein r length. Propodeum mostly smooth and shiny, with some rugosity longitudinally and along median transverse area, without trace of some transverse carina; median longitudinal carina complete at least on anterior 0.5; propodeal areola present medio-posteriorly. Metafemur L/W: 2.5×. Anterior 0.5 of T1 coarsely punctate-rugose, rest of T1 and T2 mostly smooth; T1 median length 1.7× its width at posterior margin; T2 width at posterior margin 1.8× its median length. Metatibia L: 0.79 mm. Metatibia L/ovipositor sheath L: 2.9×. Ovipositor sheath L: 0.27 mm. Maximum length of setae on ovipositor sheath at most slightly longer than maximum width of ovipositor sheath.

Body dark brown to black. Mouth parts, humeral complex, wing veins, trochantellus, apical part of pro- and mesofemora, pro- and mesotibiae and tarsi and anterior 0.2 of metatibia and basal sternites yellowish-brown. Palpi pale yellow.

Male. Unknown.

Hosts. Unknown.

Distribution. Western Palaearctic Region: Austria

Etymology. The name refers to the region in Georgia (Kakheti), where it was found.

Comments. The distribution of _P. kakhetiensis_ seems to overlap with that of _P. wesmaeli_, although _P. kakhetiensis_ was collected at a higher altitude (1840 m) than wesmaeli specimens.

Paroplitis luzonicus Mason, 1981

Description. Female (n = 1). Body length: 2.8 mm. Fore wing length: 2.8 mm. F14 L/W: 2.0×. Metatibia L: 0.89 mm. Metatibia L/ovipositor sheath L: 2.1×. Ovipositor sheath L: 0.28 mm. Maximum length of setae on ovipositor sheath at most slightly longer than maximum width of ovipositor sheath.

Body dark brown to black. Mouth parts, humeral complex, wing veins, trochantellus, apical part of pro- and mesofemora, pro- and mesotibiae and tarsi and anterior 0.2 of metatibia brown to yellowish-brown. Palpi yellow.

Male. Unknown.

Hosts. Unknown.

Distribution. Oriental Region: Philippines, Vietnam

Etymology. The name refers to the country where the species was collected in the Alps at a higher altitude (2400 m) than European specimens of _wesmaeli_.

Paroplitis vietnamensis van Achterberg & Fernandez-Triana, 2013

Figs 28–33

Comments. Only known from the female holotype. Its distribution seems to overlap with that of _P. wesmaeli_, although _P. luzonicus_ was collected in the Alps at a higher altitude (2400 m) than European specimens of _wesmaeli_.

Paroplitis rugosus Mason, 1981

Description. Female (n = 1). Body length: 2.9 mm. Fore wing length: 2.9 mm. F14 L/W: 2.1×. Metatibia L: 0.94 mm. Metatibia L/ovipositor sheath L: 2.8×. Ovipositor sheath L: 0.27 mm. Maximum length of setae on ovipositor sheath at most slightly longer than maximum width of ovipositor sheath.

Body dark brown to black. Mouth parts, humeral complex, wing veins, trochantellus, apical part of pro- and mesofemora, pro- and mesotibiae and tarsi and anterior 0.2 of metatibia brown to yellowish-brown. Palpi yellow.

Male. Unknown.

Hosts. Unknown.

Distribution. Western Palaearctic Region: Austria

Etymology. The name refers to the country where the species was collected in the Alps at a higher altitude (2400 m) than European specimens of _wesmaeli_.

Description. A detailed description and images of the species in Papp (1991).

Hosts. Unknown.

Distribution. Oriental Region: Philippines, Vietnam

Etymology. The name refers to the country where the species was collected (Vatanis et al. 2013).

Paroplitis vietnamensis van Achterberg & Fernandez-Triana, 2013

Figs 28–33

Comments. Only known from the female holotype. Its distribution seems to overlap with that of _P. wesmaeli_, although _P. vietnamensis_ was collected in the Alps at a higher altitude (2400 m) than European specimens of _wesmaeli_.

Description. A detailed description and images of the species in Papp (1991).

Hosts. Unknown.

Distribution. Oriental Region: Philippines, Vietnam

Etymology. The name refers to the country where the species was collected (Vatanis et al. 2013).

Description. A detailed description and images of the species in Papp (1991).

Hosts. Unknown.

Distribution. Western Palaearctic Region: Austria

Comments. Only known from the female holotype. Its distribution seems to overlap with that of _P. wesmaeli_, although _P. luzonicus_ was collected in the Alps at a higher altitude (2400 m) than European specimens of _wesmaeli_.

Description. A detailed description of the species and images are available in Fernandez-Triana et al. (2013). However, the description was based on only three specimens. Here, we provide an updated description based on two additional females which we were able to study.

Female. Body length: 2.1–2.3 mm; fore wing length: 2.1–2.4 mm; F2 L/W: 1.5–1.6×; F14 L/W: 1.2–1.4×; F15 L/W: 1.2–1.4×; F2 L/F14 L: 1.1–1.6×; OOL/OD: 2.3–2.6×; POL/OD: 1.6–1.8×. Fore wing with vein 2CuA entirely nebulus; vein R1 shorter than pterostigma length and a little longer than distance delimited between end of vein R1 and end of vein 3RsB. Fore wing with areol let triangular and relatively small, its maximum height 0.4–0.6× vein r length, its maximum width 0.6–0.7× vein r length. Propodeum mostly smooth and shiny, with some rugosity longitudinally and along median trans verse carina; median longitudinal carina complete, at least on anterior 0.5; transverse carina more or less developed. Metafemur L/W: 2.5–2.8×. Anterior 0.5 of T1 irregularly rugose, at least laterally, rest of T1 and T2 mostly smooth; T1 median length 1.7–1.9× its width at posterior margin; T2 width at posterior margin 2.0–2.2× its median length. Metatibia L: 0.65–0.74 mm. Metatibia L/ovipositor sheath L: 2.2–2.4×. Ovipositor sheath L: 0.28–0.34 mm. Maximum length of setae on ovipositor sheath, at most, slightly longer than maximum width of ovipositor sheath.

Hosts. Unknown.

Paroplitis wesmaeli (Ruthe, 1860)

Apaneles wesmaeli (Ruthe, 1860). Transferred by Dalla Torre 1898: 185.

Holotype. Female, IRSNB (not examined). Holotype label: enivrons de Bruxelles.

Description. A detailed description and images of the species in Papp (1991) and Fernandez-Triana et al. (2013).

Hosts. Gregarious. Hosts: A gregarious parasitoid of scoparine Cambidiae feeding in mosses (Shaw 2012); see also Yu et al. (2016).

Distribution. Western Palearctic Region: Azerbaijan, Belgium, Finland, France, Georgia, Germany, Hungary, Poland, Romania, Russia (Krasnodar Kray), Sweden, Switzerland, Ukraine and United Kingdom (Fernandez-Triana et al. 2013, 2020).

Comments. This species has a widespread distribution in the western Palearctic Region and it also has relatively large morphological variation – for example, propodeum with a transverse carina (commonly) or without a transverse carina (rarely); areola size small (commonly) or relatively larger (rarely). We suspect that, under the name *P. wesmaeli*, there could be a complex of species. However, more collecting and study of specimens (throughout the Palearctic Region), as well as DNA barcoding, will be needed before any attempt to unravel this complex is made.

Paroplitis sp.

Distribution. Oriental Region: India (Jammu and Kashmir).

Comments. This species seems to be closely related to *P. rugosus* and *P. japonicus* in having mostly entirely sculptured T1 and T2, comparatively large areolet and R1 almost as long as the length of pterostigma. However, it differs by comparatively slender F15, propodeum with longitudinal carina and comparatively slender metafemur, according to photographs by Ahmed (2017: his plate 32). These morphological differences are strong enough to consider it as a separate species. As we have not been able to examine specimens of this species, it shall remain undescribed for the time being.

Acknowledgements

The reviews of Michael Sharkey (United States), Kaoru Maeto (Kobe University, Japan) and Mark Shaw (National Museums of Scotland, United Kingdom) were extremely helpful and contributed significantly to improve the final version of the manuscript. We acknowledge the Museum für Naturkunde Berlin for waiving the author’s fees. SF thanks K. Yamagishi and J. Yamasako for their hospitality whilst working on the braconid holdings and loan of material at MUNJ and NARO. SF also thanks C. Nakata and M. Takada for providing material for this study. SF was partly supported by the JSPS KAKENHI Grant Number 19H00942. JFT was supported by project J-00276 “Systems of beneficial arthropods in support of resilient agroecosystems”, Agriculture and Agri-Food Canada.

References

